Adverse physiological and molecular level effects of polystyrene microplastics on freshwater microalgae

Catégorie : Impacts de la Pollution Plastique
Date :29 juin 2020
Avis TSC : Cette étude montre que les effets des microplastiques sur les organismes vivants ne se limitent pas à ceux capables de les ingérer. Les microalgues de type Euglènes ne se nourrissent pas de microparticules mais utilisent la photosynthèse. Malgré cela, ces auteurs ont démontré que l’ajout de microbilles de polystyrène peut perturber le métabolisme de ces microalgues. Le mécanisme semble être lié à une dérégulation de l’expression des gènes et à une réponse au stress oxydatif. Les molécules à l’origine de ces effets n’ont pas été identifiées. Elles sont présentes dans les formulations des PS utilisés dans l’expérience.
Xiao, Yao; Jiang, Xiaofeng; Liao, Yuanchen; Zhao, Weigao; Zhao, Peng; Li, Mei.
Chemosphere : 255, 126914 (2020).
Microplastics have aroused widespread concern because of their adverse effects on aquatic organisms. However, the underlying toxicity mechanisms have not been examined in detail. This study investigated the interactions between polystyrene microplastics (PS-MPs) and the model freshwater microalgae Euglena gracilis. The results of transmission electron microscopy showed that the vacuoles of microalgae were induced after 24 h exposure to 1 mg/L PS-MPs (5 μm and 0.1 μm). Furthermore, PS-MPs significantly (p < 0.05) reduced pigment contents. Moreover, superoxide dismutase activities were significantly (p < 0.05) induced in all PS-MPs treated groups. Peroxidase activities were also significantly (p < 0.05) affected by two sizes of PS-MPs (5 μm and 0.1 μm), indicating that oxidative stress was induced after exposure to PS-MPs. At the molecular level, PS-MPs dysregulated the expression of genes involved in cellular processes, genetic information processing, organismal systems, and metabolisms. The KCS gene and the CTR1 gene may be key pathways to induce adverse effects on the E. gracilis after exposure to 5 μm PS-MPs. These findings will help to elucidate the underlying molecular mechanism of microplastics toxicity on freshwater organisms.