All‐Natural, Degradable, Rolled‐Up Straws Based on Cellulose Micro‐ and Nano‐Hybrid Fibers

Catégorie : Eco-Conception des Nouveaux Matériaux Plastiques
Date :19 juin 2020
Avis TSC : Des pailles vraiment 100% biodégradables à base de cellulose, voilà une idée brillante que la nature a inventée il y a bien longtemps, mais pas pour boire son soda préféré. Bravo pour le concept et l’exploit technique, mais on peut se questionner sur la débauche d’énergie nécessaire pour une utilisation aussi futile. Ce ne sont pas que les plastiques à usage unique qu’il faudrait bannir, mais tous les objets à usage unique quelque-soit leur matière, car même s’ils sont renouvelables, biosourcés… ils consomment des ressources et de l’énergie pour être fabriqués, et pour la gestion de leur fin de vie. L’économie circulaire commence aussi, dans la prise de conscience que nos ressources sont limitées.
Wang, Xizheng; Pang, Zhenqian; Chen, Chaoji; Xia, Qinqin; Zhou, Yubing; Jing, Shuangshuang; Wang, Ruiliu; Ray, Upamanyu; Gan, Wentao; Li, Claire; Chen, Gegu; Foster, Bob; Li, Teng; Hu, Liangbing.
Advanced Functional Materials : 30 (DocId: 22) 1910417.
Among all the plastic pollution, straws have brought particularly intricate problems since they are single use, consumed in a large volume, cannot be recycled in most places, and can never be fully degraded. To solve this problem, replacements for plastic straws are being developed following with the global trend of plastic straw bans. Nevertheless, none of the available degradable alternatives are satisfactory due to drawbacks including poor natural degradability, high cost, low mechanical performance, and poor water stability. Here, all-natural degradable straws are designed by hybridizing cellulose nanofibers and microfibers in a binder-free manner. Straws are fabricated by rolling up the wet hybrid film and sealed by the internal hydrogen bonding formed among the cellulose fibers after drying. The cellulose hybrid straws show exceptional behaviors including 1) excellent mechanical performance (high tensile strength of approximate to 70 MPa and high ductility with a fracture strain of 12.7%), 2) sufficient hydrostability (10x wet mechanical strength compared to commercial paper straw), 3) low cost, and 4) high natural degradability. Given the low-cost raw materials, the binder-free hybrid design based on cellulose structure can potentially be a suitable solution to solve the environmental challenges brought by the enormous usage of plastics straws.