Fabrication of robust and compressive chitin and graphene oxide sponges for removal of microplastics with different functional groups

Catégorie : Collecte et Nettoyage des Débris Plastiques marins et aquatiques
Date :14 août 2020
Avis TSC : Les industriels du traitement de l’eau sont questionnés sur la présence de microplastiques dans l’eau potable dont l’impact sur la santé fait l’objet d’investigations de plus en plus nombreuses. Du fait de la grande variété de taille, de morphologie et de composition, les techniques classiques de filtration ne sont pas toujours adaptées. Cette étude présente un nouveau matériau à base de chitine et d’oxyde de graphène capable d’adsorber différentes catégories de polystyrène. Sous forme d’éponge, il est réutilisable, biocompatible et biodégradable en fin de vie. Il serait intéressant de savoir quelle est la proportion de microplastique de ce type dans les eaux potables par rapport aux autres fibre set débris. Dans nos maisons, ce sont les fibres de polyester issues de nos vêtements synthétiques qui sont souvent majoritaires.
Sun, Cuizhu; Wang, Zhenggang; Chen, Lingyun; Li, Fengmin.
Chemical Engineering Journal : 393,
Microplastics (MPs), an emerging threat to terrestrial ecosystems, have aroused global concerns due to the potential harm to wildlife and human. So far, no effectively method has been found to remove MPs from wastewater. In the present study, a robust and compressive sponge prepared from chitin and graphene oxide (ChGO) was achieved with the compressive stress of 50 and 40 MPa at dry and wet status. Such sponge efficiently adsorbed different types of MPs from water at pH 6-8 and can be reusable with the high adsorption capacity of 89.8%, 72.4%, and 88.9% for neat polystyrene, carboxylate-modified polystyrene, and aminemodified polystyrene, respectively, even after three adsorption-desorption cycles. The adsorption kinetic study suggested that the electrostatic interactions, hydrogen bond interactions, and pi – pi interactions were the main driving force for MPs absorption and the intra-particle diffusion played a major role in the whole adsorption process. The isotherm results followed the Langmuir isotherm model with the maximum adsorption capacity of PS calculated to be 5.898. 7.528, and 8.461 mg g(-1) at 25, 35, and 45 degrees C, respectively. In addition, the sponge did not inhibit the microalga growth using the Chromochloris zofingiensis model, and could be biodegraded by microorganisms in soil. The present study has provided a new approach for efficient MPs removal from water by using robust and compressive sponges from renewable biomaterials. Due to their excellent reusability, biocompatibility and biodegradability, such sponge has potential application in treating MPs pollution from water.