Sources, transport, measurement and impact of nano and microplastics in urban watersheds

Date of publication 8 June 2020

Authors Birch, Quinn T.; Potter, Phillip M.; Pinto, Patricio X.; Dionysiou, Dionysios D.; Al-Abed, Souhail R.

Sources Reviews in Environmental Science and Bio/Technology : 19 (DocId: 2) 275–336.

DOILink https://doi.org/10.1007/s11157-020-09529-x

Abstract

The growing and pervasive presence of plastic pollution has attracted considerable interest in recent years, especially small (< 5 mm) plastic particles known as 'microplastics' (MPs). Their widespread presence may pose a threat to marine organisms globally. Most of the nano and microplastic (N&MP) pollution in marine environments is assumed to originate from land-based sources, but their sources, transport routes, and transformations are uncertain. Information on freshwater and terrestrial systems is lacking, and data on nanoplastic pollution are particularly sparse. The shortage of systematic studies of freshwater and terrestrial systems is a critical research gap because estimates of plastic release into these systems are much higher than those for oceans. As most plastic pollution originates in urban environments, studies of urban watersheds, particularly those with high population densities and industrial activities, are especially relevant with respect to source apportionment. Released plastic debris is transported in water, soil, and air. It can be exchanged between environmental compartments, adsorb toxic compounds, and ultimately be carried long distances, with potential to cause both physical and chemical harm to a multitude of species. Measurement challenges and a lack of standardized methods has slowed progress in determining the environmental prevalence and impacts of N&MPs. An overall aim of this review is to report the sources and abundances of N&MPs in urban watersheds. We focus on urban watersheds, and summarize monitoring methods and their limitations, knowing that identifying N&MPs and their urban/industrial sources is necessary to reduce their presence in all environments.

Comments area